Homogeneity of ideals

Jacek Tryba

Hejnice, 30.01.2017

Joint work with Adam Kwela.

Homogeneity

The restriction of the ideal \mathcal{I} to $X \subseteq \bigcup \mathcal{I}$ is given by

$$\mathcal{I}|X=\{A\cap X:\ A\in\mathcal{I}\}.$$

Given two ideals \mathcal{I} and \mathcal{J} we write $\mathcal{I} \cong \mathcal{J}$ if there is a bijection $f: \bigcup \mathcal{I} \longrightarrow \bigcup \mathcal{J}$ such that $f[C] \in \mathcal{J} \Longleftrightarrow C \in \mathcal{I}$.

Homogeneity

The *restriction of the ideal* \mathcal{I} *to* $X \subseteq \bigcup \mathcal{I}$ *is given by*

$$\mathcal{I}|X=\{A\cap X:\ A\in\mathcal{I}\}.$$

Given two ideals $\mathcal I$ and $\mathcal J$ we write $\mathcal I\cong\mathcal J$ if there is a bijection $f:\bigcup\mathcal I\longrightarrow\bigcup\mathcal J$ such that $f[C]\in\mathcal J\Longleftrightarrow\mathcal C\in\mathcal I.$

Definition (Homogeneity)

Let \mathcal{I} be an ideal on ω . Then

$$H(\mathcal{I}) = \{ A \subseteq \omega : \mathcal{I} | A \cong \mathcal{I} \}$$

is called the homogeneity family of the ideal \mathcal{I} .

Homogeneity

The restriction of the ideal \mathcal{I} to $X \subseteq \bigcup \mathcal{I}$ is given by

$$\mathcal{I}|X=\{A\cap X:\ A\in\mathcal{I}\}.$$

Given two ideals $\mathcal I$ and $\mathcal J$ we write $\mathcal I\cong\mathcal J$ if there is a bijection $f:\bigcup\mathcal I\longrightarrow\bigcup\mathcal J$ such that $f[C]\in\mathcal J\Longleftrightarrow\mathcal C\in\mathcal I.$

Definition (Homogeneity)

Let \mathcal{I} be an ideal on ω . Then

$$H(\mathcal{I}) = \{ A \subseteq \omega : \mathcal{I} | A \cong \mathcal{I} \}$$

is called the homogeneity family of the ideal \mathcal{I} .

Theorem

When $A \in H(\mathcal{I})$ and $B \supseteq A$ then $B \in H(\mathcal{I})$.

Homogenous ideals

Definition

We call an ideal \mathcal{I} on ω homogeneous if $H(\mathcal{I}) = \mathcal{I}^+ = \{A \subseteq X : A \notin \mathcal{I}\}.$

Definition

We call an ideal ${\mathcal I}$ on ω anti-homogeneous if

$$H(\mathcal{I}) = \mathcal{I}^* = \{ A \subseteq X : A^c \in \mathcal{I} \}.$$

• Fin, the ideal of all finite sets, is homogeneous.

- Fin, the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.

- Fin, the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
- Van der Waerden ideal $\mathcal{W} = \{A \subseteq \omega : \exists_{n \in \omega} A \text{ does not contain an arithmetic progression of length } n\}$ is homogeneous.

- Fin, the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
- Van der Waerden ideal $\mathcal{W} = \{A \subseteq \omega : \exists_{n \in \omega} A \text{ does not contain an arithmetic progression of length } n\}$ is homogeneous.
- Let $\{I_n : n \in \omega\}$ be a family of consecutive intervals such that each I_n has length n!. An ideal $\mathcal{I} = \{A \subseteq \omega : \lim_{n \to \infty} |A \cap I_n|/n! = 0\}$ is anti-homogeneous.

- Fin, the ideal of all finite sets, is homogeneous.
- Maximal ideals are both homogeneous and anti-homogeneous.
- Van der Waerden ideal $\mathcal{W} = \{A \subseteq \omega : \exists_{n \in \omega} A \text{ does not contain an arithmetic progression of length } n\}$ is homogeneous.
- Let $\{I_n : n \in \omega\}$ be a family of consecutive intervals such that each I_n has length n!. An ideal $\mathcal{I} = \{A \subseteq \omega : \lim_{n \to \infty} |A \cap I_n|/n! = 0\}$ is anti-homogeneous.
- Ideal of sets of asymptotic density zero $\mathcal{I}_d = \left\{ A \subseteq \mathbb{N} : \lim_{n \to \infty} \frac{|A \cap \{0,1,\dots,n\}|}{n+1} = 0 \right\} \text{ is neither homogeneous nor anti-homogeneous.}$

Invariant functions

Definition (Balcerzak, Głąb, Swaczyna)

Let $\mathcal I$ be an ideal on ω and $f\colon\omega\to\omega$ be an injection. We say that f is:

- \mathcal{I} -invariant if $f[A] \in \mathcal{I}$ for all $A \in \mathcal{I}$;
- bi- \mathcal{I} -invariant if $f[A] \in \mathcal{I} \iff A \in \mathcal{I}$ for all $A \subseteq \omega$.

If $f: \omega \to \omega$ is bi- \mathcal{I} -invariant then $f[\omega] \in \mathcal{H}(\mathcal{I})$. On the other hand, if $A \in \mathcal{H}(\mathcal{I})$ then there is a bi- \mathcal{I} -invariant $f: \omega \to \omega$ with $f[\omega] = A$.

Fix points of invariant functions

Theorem

The following are equivalent for any ideal $\mathcal I$ on ω :

- there is an \mathcal{I} -invariant injection $f: \omega \to \omega$ with $\mathsf{Fix}(f) \notin \mathcal{I}^*$ and $f[\omega] \notin \mathcal{I}$;
- I is not a maximal ideal.

Theorem

The following are equivalent for any ideal $\mathcal I$ on ω :

- there is a bi- \mathcal{I} -invariant injection $f:\omega\to\omega$ with $\mathsf{Fix}(f)\notin\mathcal{I}^\star$;
- there are $A, B \subseteq \omega$ such that $A \triangle B \notin \mathcal{I}$ and $\mathcal{I}|A \cong \mathcal{I}|B$.

Fix points of invariant functions

Theorem

The following are equivalent for any ideal $\mathcal I$ on ω :

- there is an \mathcal{I} -invariant injection $f: \omega \to \omega$ with $\mathsf{Fix}(f) \notin \mathcal{I}^*$ and $f[\omega] \notin \mathcal{I}$;
- I is not a maximal ideal.

Theorem

The following are equivalent for any ideal $\mathcal I$ on ω :

- there is a bi- \mathcal{I} -invariant injection $f:\omega\to\omega$ with $\mathsf{Fix}(f)\notin\mathcal{I}^\star$;
- there are $A, B \subseteq \omega$ such that $A \triangle B \notin \mathcal{I}$ and $\mathcal{I}|A \cong \mathcal{I}|B$.

Problem

Characterize the ideals for which there are no $A, B \subseteq \omega$ such that $A \triangle B \notin \mathcal{I}$ and $\mathcal{I}|A \cong \mathcal{I}|B$. Specifically, find a "nice" example of such an ideal.

Ideal convergence

Let $\mathcal I$ be an ideal on ω . We say that a real sequence $(x_n)_{n\in\omega}$ is $\mathcal I$ -convergent to $x\in\mathbb R$ if for every $\varepsilon>0$ we have

$$\{n \in \omega : |x_n - x| > \varepsilon\} \in \mathcal{I}.$$

Ideal convergence

Let \mathcal{I} be an ideal on ω . We say that a real sequence $(x_n)_{n\in\omega}$ is \mathcal{I} -convergent to $x\in\mathbb{R}$ if for every $\varepsilon>0$ we have

$$\{n \in \omega : |x_n - x| > \varepsilon\} \in \mathcal{I}.$$

Proposition

The following are equivalent for any ideal \mathcal{I} on ω not isomorphic to $Fin \oplus \mathcal{P}(\omega)$:

- for any sequence $(x_n)_{n\in\omega}$ of reals, \mathcal{I} -convergence of $(x_n)_{n\in\omega}$ to some $x\in\mathbb{R}$ implies convergence of $(x_{f(n)})_{n\in\omega}$ to x for some bi- \mathcal{I} -invariant injection f;
- for every countable family $\{A_n : n \in \omega\} \subseteq \mathcal{I}$ there exists such $A \in \mathcal{H}(\mathcal{I})$ that $A \cap A_n$ is finite for every $n \in \omega$.

A homogeneous ideal satisfies the above if and only if it is a weak P-ideal. Moreover, an anti-homogeneous ideal satisfies the above if and only if it is a P-ideal.

Enumeration as isomorphism

Theorem

Let $A \in H(\mathcal{I}_d)$ and $\{a_0, a_1 \ldots\}$ be an increasing enumeration of A. Then the function $f : \omega \to A$ given by $f(n) = a_n$ witnesses that $\mathcal{I}_d | A \cong \mathcal{I}_d$.

Enumeration as isomorphism

Theorem

Let $A \in H(\mathcal{I}_d)$ and $\{a_0, a_1 \ldots\}$ be an increasing enumeration of A. Then the function $f : \omega \to A$ given by $f(n) = a_n$ witnesses that $\mathcal{I}_d | A \cong \mathcal{I}_d$.

Problem

Characterize ideals $\mathcal I$ such that for any $A \in H(\mathcal I)$ the function $f: \omega \to A$ given by $f(n) = a_n$, where $\{a_0, a_1 \ldots\}$ is an increasing enumeration of A, witnesses that $\mathcal I|A \cong \mathcal I$.